Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Parasite Epidemiol Control ; 2(4): 7-14, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29774291

ABSTRACT

Lymphatic filariasis (LF) is a mosquito-borne disease, broadly endemic in Zambia, and is targeted for elimination by mass drug administration (MDA) of albendazole and diethylcarbamazine citrate (DEC) to at-risk populations. Anopheline mosquitoes are primary vectors of LF in Africa, and it is possible that the significant scale-up of malaria vector control over the past decade may have also impacted LF transmission, and contributed to a decrease in prevalence in Zambia. We therefore aimed to examine the putative association between decreasing LF prevalence and increasing coverage of insecticide-treated mosquito nets (ITNs) for malaria vector control, by comparing LF mapping data collected between 2003-2005 and 2009-2011 to LF sentinel site prevalence data collected between 2012 and 2014, before any anti-LF MDA was started. The coverage of ITNs for malaria was quantified and compared for each site in relation to the dynamics of LF. We found a significant decrease in LF prevalence from the years 2003-2005 (11.5% CI95 6.6; 16.4) to 2012-2014 (0.6% CI95 0.03; 1.1); at the same time, there was a significant scale-up of ITNs across the country from 0.2% (CI95 0.0; 0.3) to 76.1% (CI95 71.4; 80.7) respectively. The creation and comparison of two linear models demonstrated that the geographical and temporal variation in ITN coverage was a better predictor of LF prevalence than year alone. Whilst a causal relationship between LF prevalence and ITN coverage cannot be proved, we propose that the scale-up of ITNs has helped to control Anopheles mosquito populations, which have in turn impacted on LF transmission significantly before the scale-up of MDA. This putative synergy with vector control has helped to put Zambia on track to meet national and global goals of LF elimination by 2020.

2.
Parasite Epidemiol Control ; 1(3): 263-267, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29988183

ABSTRACT

As a part of the lymphatic filariasis (LF) transmission assessment survey (TAS)/soil-transmitted helminths (STH) prevalence survey in Western Division of Fiji, a pilot screen for Strongyloides stercoralis (SS) in school children was undertaken using a combination of the Baermann concentration (BC) method and real-time PCR assays. Using BC, faecal samples collected from 111 children of 7 schools were examined. A single child was positive for larvae of SS and underwent a clinical examination finding an asymptomatic infection. Other members of this child's household were screened with BC, finding none infected. Aliquots of 173 faecal samples preserved in ethanol originating from all schools were examined by real-time PCR, and the prevalence of SS infection was 3.5%. Our study confirms the existence of SS infection on Fiji and showed that assessing SS prevalence alongside TAS/STH survey is a convenient access platform, allowing introduction of other surveillance techniques such as BC and real-time PCR.

3.
Parasit Vectors ; 8: 547, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26489753

ABSTRACT

BACKGROUND: With ambitious targets to eliminate lymphatic filariasis over the coming years, there is a need to identify optimal strategies to achieve them in areas with different baseline prevalence and stages of control. Modelling can assist in identifying what data should be collected and what strategies are best for which scenarios. METHODS: We develop a new individual-based, stochastic mathematical model of the transmission of lymphatic filariasis. We validate the model by fitting to a first time point and predicting future timepoints from surveillance data in Kenya and Sri Lanka, which have different vectors and different stages of the control programme. We then simulate different treatment scenarios in low, medium and high transmission settings, comparing once yearly mass drug administration (MDA) with more frequent MDA and higher coverage. We investigate the potential impact that vector control, systematic non-compliance and different levels of aggregation have on the dynamics of transmission and control. RESULTS: In all settings, increasing coverage from 65 to 80 % has a similar impact on control to treating twice a year at 65 % coverage, for fewer drug treatments being distributed. Vector control has a large impact, even at moderate levels. The extent of aggregation of parasite loads amongst a small portion of the population, which has been estimated to be highly variable in different settings, can undermine the success of a programme, particularly if high risk sub-communities are not accessing interventions. CONCLUSION: Even moderate levels of vector control have a large impact both on the reduction in prevalence and the maintenance of gains made during MDA, even when parasite loads are highly aggregated, and use of vector control is at moderate levels. For the same prevalence, differences in aggregation and adherence can result in very different dynamics. The novel analysis of a small amount of surveillance data and resulting simulations highlight the need for more individual level data to be analysed to effectively tailor programmes in the drive for elimination.


Subject(s)
Disease Transmission, Infectious/prevention & control , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/transmission , Filaricides/administration & dosage , Insect Control/methods , Models, Theoretical , Elephantiasis, Filarial/epidemiology , Kenya/epidemiology , Prevalence , Sri Lanka/epidemiology
4.
Med Vet Entomol ; 29(1): 44-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25417803

ABSTRACT

The emergence of insecticide resistance in Anopheles (Diptera: Culicidae) mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and the frequency of knock-down resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and Anopheles gambiae Giles from the Ojoo and Bodija areas of Ibadan, in southwest Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and organochlorines was assessed using World Health Organization (WHO) bioassays. A subset of the mosquitoes exposed to pyrethroids and DDT was used for species and molecular form identification; kdr genotyping was determined using the TaqMan real-time polymerase chain reaction assay. The mosquitoes were resistant to pyrethroids and DDT but completely susceptible to organophosphates and carbamates. Bodija samples (n = 186) consisted of An. gambiae (91.4%) and An. coluzzii (8.1%) and included one An. coluzzii/An. gambiae hybrid specimen. All mosquitoes screened in Ojoo (n = 26) were An. gambiae. The 1014F kdr mutation was detected at frequencies of 24.5 and 5.8% in Bodija and Ojoo, respectively. No correlation was observed between kdr genotypes and resistance phenotypes. The results indicate that metabolic resistance probably plays an important role in the development of resistance and highlight the need to implement insecticide resistance management strategies.


Subject(s)
Anopheles/drug effects , Insect Proteins/genetics , Insecticide Resistance , Insecticides/pharmacology , Mutation Rate , Animals , Carbamates/pharmacology , Decision Making , Insect Proteins/metabolism , Mosquito Control/methods , Nigeria , Organophosphates/pharmacology
5.
Trans R Soc Trop Med Hyg ; 99(10): 751-61, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16099009

ABSTRACT

The malaria situation in Sri Lanka worsened during the 1990s with the emergence and spread of resistance to the drugs and insecticides used for control. Chloroquine resistance has increased rapidly over this period, but adverse changes in malaria transmission are more closely associated with insecticide use rather than drug resistance. Insecticide susceptibility tests were routinely carried out in key anopheline vectors across the country for more than a decade. These sentinel data were combined with data collected by other research programmes and used to map the spatial and temporal trends of insecticide resistance in the main vectors, Anopheles culicifacies and A. subpictus, and to examine the relationship between insecticide resistance, changes in national spraying regimens and malaria prevalence. Both species had widespread resistance to malathion, the insecticide of choice in the early 1990s. Both species were initially susceptible to the organophosphate and pyrethroid insecticides used operationally from 1993, but some resistance has now been selected. The levels of malathion and fenitrothion resistance in A. subpictus were higher in some ecological regions than others, which may be related to the distribution of sibling species, agricultural pesticide exposure and/or environmental factors. The study highlights that the emergence and spread of insecticide resistance is a constant threat and that active surveillance systems are vital in identifying key vectors and evidence of resistance.


Subject(s)
Anopheles/drug effects , Insecticide Resistance , Malaria/epidemiology , Animals , Incidence , Mosquito Control , Sri Lanka/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...